Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

نویسندگان

  • Nuri Hyun Jung
  • Youngseob Shin
  • In-Hye Jung
  • Jungwon Kwak
چکیده

PURPOSE Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. MATERIALS AND METHODS Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. RESULTS With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. CONCLUSION RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Va...

متن کامل

Normal Tissue Complication Probability (NTCP) modeling and validation of quantitative analysis of normal tissue effects in the clinic (QUANTEC) guideline using quality of life questionnaire for parotid gland during head and neck radiotherapy

Introduction: Radiation therapy is the main treatment method for head and neck cancers, which comprise 3–5% of all cancers. A major side effect of this treatment is complication of the parotid glands, i.e. xerostomia, which occurs at relatively low doses. This complication leads to mouth dryness which is the most common problem for head and neck cancer survivors. There are dif...

متن کامل

Effect of uniform magnetic field on dose distribution in the breast radiotherapy

Background: To reduce the dose to normal tissues surrounding the treated breast, a uniform magnetic field was used within a humanoid phantom in breast radiotherapy. Materials and Methods: Monte Carlo simulations were performed with GEANT4, irradiating humanoid phantoms in a magnetic field. To reconstruct phantoms, computed tomography (CT) data slices of four patients were used for the Monte Car...

متن کامل

Investigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy

Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose.  In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2015